spanish

INDI ar er ir SUBJ ar er ir
yo o o o yo e a a
as es es es as as
ustd a e e ustd e a a
nos amos emos emos nos emos amos amos
vos áis éis éis vos éis áis áis
ustds an en en ustds en an an

irregular: tener, hacer, venir, ser, ir, saber, estar, dar, ver, haber

IM A ar er ir IM N er ir
a e e es as
ustd e a a ustd e a
nos emos amos amos nos emos amos
vos ad ed id vos éis áis
ustds en an an ustds en an

me molesta bothers me,me da rabia makes...

See on Wikiteka »

lenguilla

La comedia nueva (Barroco)
Creada por Lope de Vega, la comedia nueva rompe con las reglas clásicas y busca entretener al público respetando sus gustos.

Características principales:
Escrita en verso con variedad métrica.
Tres actos: planteamiento, nudo y desenlace. Ruptura de las unidades clásicas de tiempo, lugar y acción. Mezcla de elementos trágicos y cómicos. Temas variados: mitología, Biblia, historia, vidas de santos, novelas italianas, etc.- Objetivo doble: entretener y reforzar la

...

See on Xuletas »

missss

#Security issues in wireless 

Wireless networks offer convenience and flexibility, but they also come with a range of security issues that can expose users and organizations to various threats. Below are some of the most common security issues in wireless networks:
1.Unauthorized Access (Rogue Access Points):::Description: Attackers can set up fake access points (APs) to trick users into connecting. ::: Impact: Allows attackers to intercept traffic and steal credentials.::Mitigation: Use WPA3 encryption,

...

See on Student Notes »

geografia

 Crescimento Económico vs. Desenvolvimento

Crescimento económico: aumento da riqueza produzida por um país (medido pelo PIB).

Exemplo: aumento da produção industrial, exportações, investimento.

Desenvolvimento: melhoria das condições de vida da população.Inclui educação, saúde, acesso à água potável, igualdade de género, etc.

Medido por indicadores como o IDH (Índice de Desenvolvimento Humano).

 Evolução Espácio-Temporal do Desenvolvimento

Países desenvolvidos (ex.: Noruega,

...

See on Wikiteka »

ortho 2.2

Light pressure: <1 sec: PDL fluid incompressible, alveolar bone bends, piezoelectric signal generated/1–2 sec: PDL fluid expressed, tooth moves within PDL space/3–5 sec:Blood flow within PDL partially compressed pressure side, dilated tension side/Mins:Blood flow altered, oxygen tension begin change/Hours:Metabolic changes chemical messengers affect cellular activity/<4Hrs: Cellular differentiation begins within PDL/ 2 days: Tooth movement osteoclasts osteoblasts remodel bone

Heavy Pressure:

...

See on Wikiteka »

QIM final

Likelihood function: Description of how observed data depends on the model parameters, θ. p(x|θ)

MLE: The estimator δ(x) = argmax p(x|θ) = argmax lnp(x|θ). gaussian log likelihood isAD_4nXens3ikERhLz2M8HRO4dfpKx9_w9BgUbx73ALHG41CGRjsBxhIsjOw4BzE1BphWCTk53xzdyxIzHr1I422n2rEii-8h4nn-e_ANVu9Lfvd-9gTgwuMjXiTVHu3h94h_Pp-zzdZm?key=LHRE6LkDAk3aauFWnXAY3w andAD_4nXcBOqTKdnd_44nT9SvCEN_DC3fTsTRA6L92Ma8KuAwJFiqJw1ob3yLLhFBxcIFmvg5br9WC97OQbtxEoadi3MJZmlNWDP--HzQmzGYYOHlE92JvAyaLrwZrPv1hOvQE0-1bhjRPHw?key=LHRE6LkDAk3aauFWnXAY3w

Asymptotic distribution of MLE when n is large: AD_4nXcfhoYKSvG5j_M-BufAmuQPVt-n61jGX9AFGHH72am8FJwK1jJwpVhCbd18IozHsGDa5vglE6F4FYN9cMiEDAVGKnnwWcmgNHuaykwujgCqRVwcUUjRoQhM2WOLFu1X5v91vhpY8g?key=LHRE6LkDAk3aauFWnXAY3w, where AD_4nXfMjcWPVzPNV0KN67nEqo0BJIubRYV7FNxAznDQ2qrpYrVa_i36aynPjaomQ_CdQ1IZCCPIVU7aX2iaVZXGbVsUBaDXxn1wfyL61ohsq4xQrN0ndXHz4z62whJP9c9NWJ44fj8o?key=LHRE6LkDAk3aauFWnXAY3w. E.g.1.gaussian AD_4nXcrVSk61EBxOo-Yfcy7NovkHFiXR9vRQ1oDMDZJ3PDU1456xscUf4UlFihY50DKAC01kl1PrBCg8QvDmEYTZP7OGzMwky8IW5kWMc5-UBMyy14DWAuL8TqaPuoFOkeG2gWp4UrM?key=LHRE6LkDAk3aauFWnXAY3w, e.g.2. Expontial AD_4nXdH3ZJbiU6DQ5fU66ztOanYvjMdHipMqQE66STpcJ_EYuBzRVH8grFgu9sedLQyeyMJmQZnD7hJ4i4SMSNcovoOpwfxK5RMHGPMLsJU-r_CtmogiS2jFbspG7UWBymWywXcp607?key=LHRE6LkDAk3aauFWnXAY3w

Bayesian:The forecast AD_4nXcQACF6aLi-R_oXFCxI00TGSzp-SYj3jT4-te79_CYDkkQzjHqVCY84UHTLI03s8qaHtVH0-f6QJk3J2FkjzwpsQlsphLkRnAtWxyBhAwwowcACKqZ2xphX_gASIN2w4wWDn5_MSw?key=LHRE6LkDAk3aauFWnXAY3w. Assume the prior distribution on μ is gaussianAD_4nXcKskOFnZ3ZXHT3eqbk3qKpCxXL4DIMBegHfNaNCoQvJeujCfxhkFsOcskoJHMMXXqgjBGRShnJ1t61VksALOuSYV8yiSXw5_KpY2stVW72fC_X5U2TtCg63MqAZHWQR0YmHdF8Cw?key=LHRE6LkDAk3aauFWnXAY3wAD_4nXeCd6igHYFjybY4OO4G986Q0BHkjJ1-TXQa29cWgb_tTRFJBkisLbG2CWUR3M_0KDJevrTUUr9cJuxUWkGI4B7kIFtIzbA8ESxuV4PcNiy-VnB69kDIUGnyMlXOYnxuqRxNlP5diQ?key=LHRE6LkDAk3aauFWnXAY3wwhere AD_4nXd6hN_vlDGmQNUX3zfexq1ZG5_ePZy2_PzQ3v7m6yENFBF_AsUz88VwhD4THFoEk2KzZ8aNHugtumHIbUcBHh08levaYbW_Mua_ESmQxjBovQGl6ij2FkGqQqi9exlh07jYUOLluA?key=LHRE6LkDAk3aauFWnXAY3w when T→∞, mT = μ, & MAP is almost same as MLE(rely almost entirely on data, not prior). MAP estimator: the value θMAP @ which...

See on Student Notes »

klkklkkk

1. Different between raster and vector graphics method. what do you prefer

=>Raster: *//it Representation  Pixels *//Resolution-dependent *//Larger (esp. high-res images) *//Blurs/pixelates on scaling *//JPG, PNG, BMP 

=.>VectorG : *//Mathematical formulas (lines, curves) **//Resolution-independent *//Smaller *//Scales cleanly *//SVG, EPS

If working with photos or detailed images: Raster is better. If designing logos, icons, or anything that needs to scale (e.g., for both mobile and billboard)

...

See on Student Notes »

prime

                                           //prime

    int num, i, isPrime = 1;//after this print and scan num

    if (num <= 1) {
        isPrime = 0;
    } else {
        for (i = 2; i <= num / 2; i++) {
            if (num % i == 0) {
                isPrime = 0;
                break; }}}

    if (isPrime)
        printf("%d is a prime number.\n", num);
    else{print no prime}

                                   

...

See on Student Notes »

Bigdata

Unit-1

What is Big Data

Data which are very large in size is called Big Data. Normally we work on data of size MB (WordDoc ,Excel) or maximum GB(Movies, Codes) but data in Peta bytes i.e. 10^15 byte size is called Big Data. It is stated that almost 90% of today's data has been generated in the past 3 years.

Sources of Big Data

These data come from many sources like

Social networking sites: Facebook, Google, LinkedIn all these sites generates huge amount of data on a day to day basis as they have...

See on Student Notes »